Year 2 Unit 16: Multiplication and division ( $3 x$ and $4 x$ ) ( 3 weeks)

Before you start...

- How confident are pupils with the 2, 5 and 10 multiplication tables?
- Which representations, in relation to multiplication and division, are pupils familiar with:
- Arrays

Equations
Part-whole models
Skip counting on a number line?

- What experience do pupils have in creating bar models?

The multiplication tables can be written in either way e.g.as $2 \times 3$ or $3 \times 2$. It then depends upon how the equation is interpreted, for example, for $3 \times 2$ you can say "three two times" or for $2 \times 3$ you can say "two groups of three".


This article considers why the use of arrays are so important in supporting conceptual understanding.

Video: Arrays - multiplication and division
4
(x) 3

You may choose to use 1 of
2 consolidation lessons here to develop pupils, ability to spot patterns within the multiplication tables.

## Exploring the multiplication tables of three and four

L1 Recall the multiplication table of three using skip counting L2 Recall the multiplication table of four using skip counting L3 Represent multiplication using an arrays
Pupils explore contexts where, through the use of equal groups, multiplication can be applied. Across Lesson 1 and 2, they will connect the bead string representation to a number line and skip counting, applying their knowledge to solve problems. During these lessons, pupils are introduced to the terms 'multiple' and 'product'. Lesson 3 will see pupils build arrays for both multiplication tables and explore the commutative aspect that arrays expose
? How will you draw pupils attention to the patterns that exist within the given multiplication table?
? What does the array stress and ignore?

## Connecting multiplication and division

L4 Division facts for the multiplication table of three
L5 Division facts for the multiplication table of four
L6 Identify fact families
L7 Recognise the inverse relationship
Pupils build on their understanding of arrays and multiplication tables to explore the inverse relationship that exists between multiplication and division and the flexibility this provides in learning associated division facts. In Lesson 6 , with one array, pupils apply their inverse knowledge and the commutative law to identify the two division facts and two multiplication facts that it represents. They compare the orientation of two arrays both showing the same number of dots in the same number of equal parts connecting this to the part whole model to help solve missing number problems in Lesson 7.
? What opportunities will you provide for pupils to explore different ways of expressing the same or similar ideas? ? What questions and prompts might you use while learners work on the task(s) to draw their attention to key features of the concept and address misconceptions?

Video: Bar modelling - Multiplication as equal parts

Video: Bar modelling - Multiplication as times as many

Video: Bar modelling - Comparing multiplication bar models
2

> There are five bananas in each pack. There are four packs. How many bananas are there altogether?

Which problem matches the bar model?


Video: Knowns and
unknowns

## Applying multiplication and division knowledge using bar models

L11 Create bar models for multiplication and division
L12 Identify the whole and parts in bar models
L13 Represent word problems using bar models
L14 Solve problems using bar models
Pupils interpret word problems representing them using an array, connecting this to a part whole model and a bar model. Through discussing what is known and what is unknown, pupils identify and label parts of a bar model, writing the equations that each bar model represents before then matching bar models to the correct multiplication and division word problems and solving a range of problems in Lesson 13. In the final lesson, pupils move on to solve problems that include comparative language and bar models with an emphasis on two amounts and the multiplicative comparison between them.
? What language will be necessary to draw attention to connections between the representations you plan to use?
? What are the 'difficulty points' in the mathematics you are teaching?


Video: Patterns within and between times tables


## Is it a part? Is it a whole?

Modelling and encouraging pupils to use accurate mathematical vocabulary to describe multiplication and division will support developing connections and deepen conceptual understanding. "There are five equal parts each with a value of four"
"There are four parts. Each part has a value of five."
Is it a part? Is it a whole?
Modelling and encouraging pupils to
use accurate mathematical vocabulary
to describe multiplication and division
will support developing connections
and deepen conceptual understanding.
"There are five equal parts each with
a value of four"
"There are four parts. Each part has
a value of five."

