Before starting：
－What previous experiences have pupils had with adding equal groups and sharing equally？ －How confident are pupils in skip counting in different ways？

Video：Knowns and

Introducing the multiplication symbol

L1 Use the multiplication symbol
L2 Understand that multiplication is commutative
Pupils begin by interpreting arrays and opportunities should be made for dialogue and to allow for the exploration of commutativity：＇I see 4 groups of 5＇writing this as＇ $5+5+5+5$＇and＇I see 5 groups of 4 ＇ writing this as＇ $4+4+4+4+4$＇emphasising how＇the whole is 20 ＇in both cases．Encourage pupils to start making sense of the abstract multiplication symbol by first activating prior knowledge of repeated addition，to allow a meaningful introduction to＇equal groups＇．Provide opportunities for pupils to create both concrete and pictorial representations of arrays and make connections to＇part－whole＇ representations by modelling the associated language．

Introducing the division symbol

L3 Use the division symbol when sharing
L4 Use the division symbol when grouping L5 Explore representation of division
L6 Find related multiplication and division facts
Wen introducing division，mirror scenarios from lesson 2 to make connections to multiplication as the inverse operation．Continue describing arrays with part－whole language to emphasise these connections as well as the concept of＇equal parts／groups＇．This way，pupils can flexibly apply their knowledge of multiplication tables when solving division equations．Two division structures are explored：first＇division as sharing＇then＇division as grouping＇and pupils explore a mixture of word problems in both contexts． Pupils continue to ask themselves＇what do we know？What do we not know？＇to interpret the word problem and represent the known and unknown values using bar models．Pupils apply their learning from earlier lessons in this unit during lesson 6 through interpreting arrays and engaging in dialogue to reason about related multiplication and division facts．
Variation and task design
Tasks in this unit have purposefully been designed with variation in mind－
equations have been deliberately chosen to evoke pattern seeking．Encourage
pupils to ask themselves＇What＇s the same？What＇s different？＇about the
groups of equations．The purpose is for pupils to pay attention to the
underlying mathematical structures．For example，when multiplying，increasing
and decreasing the number of groups affects the value of the whole．
To find out more about variation have a look at our articles．
？How can concrete manipulatives and modelling＇part－whole＇language help pupils overcome misconceptions such as $3 \div 2=6$ or $6 \times 3=2$ ？

Pattern seeking and problem solving

L12 Spot patterns in 2， 5 and 10 times tables
L13 Solve multiplication and division word problems
In lesson 12，pupils explore and compare the patterns in the multiplication tables 2， 5 and 10 on a 100 square．Encourage pupils to make conjectures around the properties of these multiplication tables （e．g．multiples of two are always even，multiples of five always have a 5 or a 0 in the ones digit）and then explore and test out their conjectures． Learning across the entire unit is applied in lesson 13 where pupils solve missing number multiplication and division equations to crack a solve missing number multiplication and division equations to crack a
code．The position of the missing number and the＇is equal to＇sign has code．The position of the missing number and the＇is equal to＇sign has
been purposefully varied to encourage deeper mathematical thinking．

Exploring the two，five and ten times tables

L7 Calculate multiples of two by skip counting
L8 Explore representations of multiplication problems
L9 Relate multiplying by two to doubling
L10 Calculate multiples of five by skip counting
L11 Calculate multiples of ten by skip counting
In lesson 7，understanding around repeated addition and skip counting in twos is connected to the multiplication table of two．Encourage pupils to make groups of two using concrete manipulatives （cubes／bead strings）to help make sense of the abstract spoken and written equations（e．g．one group of 2 ＇$=$＇one part with a value of $2^{\prime}=' 1 \times 2=2$＇）．Make connections to prior learning in this unit when arrays and bar models are re－introduced to explore word problems in lesson 8．These representations are extended in lesson 9 when pupils make connections between multiplying by two and doubling．Learning（including representations and language structures）from lesson 7－9 is applied to the multiplication tables of five and ten in lessons 10 and 11.

