Before you start...

- What representations of unit and non-unit fractions are your pupils familiar with?
- How do pupils compare and fractions with the sand fractions with the
- What equivalent fractions do pupils know and how do they represent and explain these?

Video: Interpreting fractions
in different ways

L9 is the suggested time for a consolidation lesson to secure understanding around each of the interpretations of fractions. You may wish to use this earlier to interpretations in further detail

Video: Representing mixed numbers and improper fractions

If $\square=\frac{1}{2}$
$=1$
$=1 \frac{1}{2}$
$=2$

Understanding mixed numbers and

 improper fractionsL10 Recognise mixed numbers
L11 Recognise improper fractions
L12 Convert mixed numbers to improper fractions

So far, the focus has been on fractions with a value less than 1 . Pupils apply their knowledge of interpretations explored so far when representing mixed numbers and improper fractions using a range of models.
? Are pupils aware that fractions can be greater than one? How will you use Maths Meetings and transitions to develop fluency around this?

```
Video: Fraction word
    problems: ba modelling
```

A class has 32 pupils. One quarter of them walk to school. How many pupils walk to school?

Solving problems involving fractions of a quantity

L18 Solve problems involving unit fractions
L19 Solve problems involving non-unit fractions
L20 Solve multi-step problems by comparing non-unit fractions
Experiences with fractions of quantity should go beyond the procedure of 'dividing by the denominator and multiplying by the numerator'. Constructing bar models allow pupils to see part-whole relationships and the steps of the procedure
? How will you model the process of creating bar models, using known and unknown values from problems?

Fractions are full of procedures! Teaching procedures without opportunities to construct understanding and reasoning leaves pupils relying on memorising abstract rules which are often mixed up. Watch the videos to consider what models and images you will use to deepen pupils' understanding of each procedure.

L17 is the suggested time for a consolidation lesson to secure understanding around adding and subtracting fractions before applying this to word problems.

Teaching fractions with understanding

 This article illustrates different perspectives through which children see fractions, considering ways to feach fractions to develop a depth of understanding.

Video: Adding and subtracting fractions

Adding and subtracting fractions with the same denominator

L13 Add fractions
L14 Subtract fractions
L15 Add fractions with an answer greater than one
L16 Subtract fractions including those greater than one
Pupils extend their learning to calculate using fractions. Experiences with adding and subtracting fractions (with the same denominator) should go beyond teaching the procedure of 'just add the top numbers'. To deepen conceptual understanding, pupils are exposed to multiple representations, encouraging them to make connections between mixed numbers and improper fractions.
? How will you use the suggested representations to address the misconception of adding/subtracting the denominators (e.g. $\frac{1}{2}+\frac{1}{2}=\frac{2}{4}$)?

