Year 6 Unit 6: Coordinates and shape (2 weeks)

## Before you start...

- What do pupils already know about 2-D shape, particularly
- How secure are pupils in using
now secure are pup
- How confident are pupils in using rulers and protractors and reading the different scales?

Video: Using a protractor
 further tasks related to negative numbers in the Positive and Negative Number Task Bank which Positive and Negative Number Task Bank which during consolidation lessons to explore further.

## It's all negative

This article from NRICH provides further suggestions for introducing and using negative numbers in context. This NRICH article provides an insight into calculating intervals across zero
This Espresso article from Cambridge Mathematics provides This Espresso article from Cambridge Mathematics provides research into introducing negative numbers.


## Video: Reflection or

 Translation?Lesson 7 is a suggested consolidation lesson. You may wish to use this to extend problem solving opportunities

## Drawing 2-D shapes

L1 Draw 2-D shapes
Pupils begin the unit by drawing 2-D shapes using given instructions, consolidating their understanding of the properties of shapes as well as the skill of using a ruler and protractor accurately. Take time to ensure these skills are secure and consider how you will clearly model the use of this equipment.


## Describing circles

L10 Illustrate and name parts of a circle
Pupils learn the names of different parts of the circle and this knowledge should be regularly revisited in Maths Meetings. Ensure exposure to examples and non-examples of key parts such as the radius and diameter to deepen understanding. Pupils then solve problems involving the relationship between radius and diameter.
? How will you ensure all pupils have multiple opportunities to use the key language introduced in this lesson?

## Using and applying coordinates

L2 Describe coordinates in all four quadrants
L3 Draw and translate 2-D shapes
L4 Draw and reflect 2-D shapes
L5\&6 Solve problems involving coordinates
Pupils consolidate their understanding of describing and plotting coordinates before extending this to consider a full coordinate grid. Consider how this lesson can be used to explore key difficulty points including the order coordinates appear in and the coordinates of points on the axes. By the end of lesson 2 pupils should be able to generalise about the values of coordinates in each quadrant. Pupils have experienced translation and reflection of 2-D shapes in previous learning and this is extended in lesson 3 and 4 by translating and reflecting across the axes. Opportunities to pattern seek and identify the relationships between coordinates before and after reflection and translation should be taken, with pupils beginning to visualise and calculate the new coordinates as a result of the transformation In lesson 5 and 6 pupils apply their deepening understanding of 2-D shapes on a coordinates plane to finding missing points first with, and then without gridlines. They draw on their understanding of the properties of 2-D shapes to calculate and plot missing points.
? What difficulty points may pupils encounter when translating and reflecting and how might you anticipate these when modelling? ? How will you encourage pupils to imagine, visualise and predict the new coordinates as a result of translation or reflection?


## Exploring 3-D shape

L8 Describe 3-D shapes including from nets
L9 Recognise and build 3-D shapes from nets
Pupils compare and classify a range of 3-D shapes, applying their understanding of the properties of 2-D shapes. This allows opportunities to generalise about the properties of categories of 3-D shapes such as prisms. Throughout this lesson pupils should be exposed to a range of concrete and pictorial 3-D shapes. They then explore nets and discuss the 2-D shapes required to build a net, before solving problems involving nets, such as the position of dots on the net of a die. Alongside encouraging pupils to visualise folding nets, pupils should have opportunities to practically experience this.
? What representations and examples will you provide to support pupils in identifying 3-D shapes based on their properties?

